Rui's Blog
  • Rui's Blog/Paper Reading Notes - Introduction
  • Personal Blog
    • Personal Blog - Index
      • How to Create Picture-in-Picture Effect / Video Overlay for a Presentation Video
      • How to Do Your Part to Protect the Environment in Wisconsin
      • How to Get a Driver's License in Wisconsin
      • How to Travel from the U.S. to China onboard AA127 in June 2021
      • How to Transfer Credits Back to UW-Madison
      • Resources on Learning Academic Writing (for Computer Science)
    • Towards applying to CS Ph.D. programs
  • Machine Learning Systems
    • Machine Learning Systems - Index
      • MLSys Papers - Short Notes
      • [2011 NSDI] Dominant Resource Fairness: Fair Allocation of Multiple Resource Types
      • [2014 OSDI] Scaling Distributed Machine Learning with the Parameter Server
      • [2018 OSDI] Gandiva: Introspective Cluster Scheduling for Deep Learning
      • [2018 SIGCOMM] Chameleon: Scalable Adaptation of Video Analytics via Temporal and Cross-camera ...
      • [2018 NIPS] Dynamic Space-Time Scheduling for GPU Inference
      • [2019 ATC] Analysis of Large-Scale Multi-Tenant GPU Clusters for DNN Training Workloads
      • [2019 NSDI] Tiresias: A GPU Cluster Manager for Distributed Deep Learning
      • [2019 SOSP] ByteScheduler: A Generic Communication Scheduler for Distributed DNN Training ...
      • [2019 SOSP] PipeDream: Generalized Pipeline Parallelism for DNN Training
      • [2019 SOSP] Parity Models: Erasure-Coded Resilience for Prediction Serving Systems
      • [2019 NIPS] GPipe: Efficient Training of Giant Neural Networks using Pipeline Parallelism
      • [2019 SC] ZeRO: memory optimizations toward training trillion parameter models
      • [2020 OSDI] Gavel: Heterogeneity-Aware Cluster Scheduling Policies for Deep Learning Workloads
      • [2020 OSDI] AntMan: Dynamic Scaling on GPU Clusters for Deep Learning
      • [2020 OSDI] BytePS: A High Performance and Generic Framework for Distributed DNN Training
      • [2020 SIGCOMM] Reducto: On-Camera Filtering for Resource-Efficient Real-Time Video Analytics
        • [2020 MLSys] Salus: Fine-Grained GPU Sharing Primitives for Deep Learning Applications
      • [2020 EuroSys] AlloX: Compute Allocation in Hybrid Clusters
      • [2020 VLDB] PyTorch Distributed: Experiences on Accelerating Data Parallel Training
      • [2020 NetAI] Is Network the Bottleneck of Distributed Training?
      • [2020 NSDI] Themis: Fair and Efficient GPU Cluster Scheduling
      • [2021 MLSys] Accordion: Adaptive Gradient Communication via Critical Learning Regime Identification
      • [2021 VLDB] Analyzing and Mitigating Data Stalls in DNN Training
      • [2021 FAST] CheckFreq: Frequent, Fine-Grained DNN Checkpointing
      • [2021 EuroMLSys] Interference-Aware Scheduling for Inference Serving
      • [2021 OSDI] Pollux: Co-adaptive Cluster Scheduling for Goodput-Optimized Deep Learning
      • [2021 MLSys] Wavelet: Efficient DNN Training with Tick-Tock Scheduling
      • [2021 NSDI] SwitchML: Scaling Distributed Machine Learning with In-Network Aggregation
    • Big Data Systems - Index
      • Big Data Systems Papers - Short Notes
      • [2003 SOSP] The Google File System
      • [2004 OSDI] MapReduce: Simplified Data Processing on Large Clusters
      • [2010 SIGMOD] Pregel: A System for Large-Scale Graph Processing
      • [2011 NSDI] Mesos: A Platform for Fine-Grained Resource Sharing in the Data Center
      • [2012 NSDI] Resilient Distributed Datasets: A Fault-Tolerant Abstraction for In-Memory Cluster ...
      • [2012 OSDI] PowerGraph: Distributed Graph-Parallel Computation on Natural Graphs
      • [2019 FAST] DistCache: Provable Load Balancing for Large-Scale Storage Systems with Distributed...
      • [2021 HotOS] From Cloud Computing to Sky Computing
      • [2021 EuroSys] NextDoor: Accelerating graph sampling for graph machine learning using GPUs
  • Earlier Readings & Notes
    • High Performance Computing Course Notes
      • Lecture 1: Course Overview
      • Lecture 2: From Code to Instructions. The FDX Cycle. Instruction Level Parallelism.
      • Lecture 3: Superscalar architectures. Measuring Computer Performance. Memory Aspects.
      • Lecture 4: The memory hierarchy. Caches.
      • Lecture 5: Caches, wrap up. Virtual Memory.
      • Lecture 6: The Walls to Sequential Computing. Moore’s Law.
      • Lecture 7: Parallel Computing. Flynn's Taxonomy. Amdahl's Law.
      • Lecture 8: GPU Computing Intro. The CUDA Programming Model. CUDA Execution Configuration.
      • Lecture 9: GPU Memory Spaces
      • Lecture 10: GPU Scheduling Issues.
      • Lecture 11: Execution Divergence. Control Flow in CUDA. CUDA Shared Memory Issues.
      • Lecture 12: Global Memory Access Patterns and Implications.
      • Lecture 13: Atomic operations in CUDA. GPU ode optimization rules of thumb.
      • Lecture 14: CUDA Case Studies. (1) 1D Stencil Operation. (2) Vector Reduction in CUDA.
      • Lecture 15: CUDA Case Studies. (3) Parallel Prefix Scan on the GPU. Using Multiple Streams in CUDA.
      • Lecture 16: Streams, and overlapping data copy with execution.
      • Lecture 17: GPU Computing: Advanced Features.
      • Lecture 18: GPU Computing with thrust and cub.
      • Lecture 19: Hardware aspects relevant in multi-core, shared memory parallel computing.
      • Lecture 20: Multi-core Parallel Computing with OpenMP. Parallel Regions.
      • Lecture 21: OpenMP Work Sharing.
      • Lecture 22: OpenMP Work Sharing
      • Lecture 23: OpenMP NUMA Aspects. Caching and OpenMP.
      • Lecture 24: Critical Thinking. Code Optimization Aspects.
      • Lecture 25: Computing with Supercomputers.
      • Lecture 26: MPI Parallel Programming General Introduction. Point-to-Point Communication.
      • Lecture 27: MPI Parallel Programming Point-to-Point communication: Blocking vs. Non-blocking sends.
      • Lecture 28: MPI Parallel Programming: MPI Collectives. Overview of topics covered in the class.
    • Cloud Computing Course Notes
      • 1.1 Introduction to Clouds, MapReduce
      • 1.2 Gossip, Membership, and Grids
      • 1.3 P2P Systems
      • 1.4 Key-Value Stores, Time, and Ordering
      • 1.5 Classical Distributed Algorithms
      • 4.1 Spark, Hortonworks, HDFS, CAP
      • 4.2 Large Scale Data Storage
    • Operating Systems Papers - Index
      • CS 736 @ UW-Madison Fall 2020 Reading List
      • All File Systems Are Not Created Equal: On the Complexity of Crafting Crash-Consistent Applications
      • ARC: A Self-Tuning, Low Overhead Replacement Cache
      • A File is Not a File: Understanding the I/O Behavior of Apple Desktop Applications
      • Biscuit: The benefits and costs of writing a POSIX kernel in a high-level language
      • Data Domain: Avoiding the Disk Bottleneck in the Data Domain Deduplication File System
      • Disco: Running Commodity Operating Systems on Scalable Multiprocessors
      • FFS: A Fast File System for UNIX
      • From WiscKey to Bourbon: A Learned Index for Log-Structured Merge Trees
      • LegoOS: A Disseminated, Distributed OS for Hardware Resource Disaggregation
      • LFS: The Design and Implementation of a Log-Structured File System
      • Lottery Scheduling: Flexible Proportional-Share Resource Management
      • Memory Resource Management in VMware ESX Server
      • Monotasks: Architecting for Performance Clarity in Data Analytics Frameworks
      • NFS: Sun's Network File System
      • OptFS: Optimistic Crash Consistency
      • RAID: A Case for Redundant Arrays of Inexpensive Disks
      • RDP: Row-Diagonal Parity for Double Disk Failure Correction
      • Resource Containers: A New Facility for Resource Management in Server Systems
      • ReVirt: Enabling Intrusion Analysis through Virtual-Machine Logging and Replay
      • Scheduler Activations: Effective Kernel Support for the User-Level Management of Parallelism
      • SnapMirror: File-System-Based Asynchronous Mirroring for Disaster Recovery
      • The Linux Scheduler: a Decade of Wasted Cores
      • The Unwritten Contract of Solid State Drives
      • Venti: A New Approach to Archival Storage
    • Earlier Notes
      • How to read a paper
  • FIXME
    • Template for Paper Reading Notes
Powered by GitBook
On this page
  • Summary
  • Background & Motivation
  • Design & Implementation
  • SwitchML overview
  • Aggregation protocol
  • Packet loss
  • Quantizing floating-point values
  • Evaluation
  • Links & References

Was this helpful?

  1. Machine Learning Systems
  2. Machine Learning Systems - Index

[2021 NSDI] SwitchML: Scaling Distributed Machine Learning with In-Network Aggregation

Previous[2021 MLSys] Wavelet: Efficient DNN Training with Tick-Tock SchedulingNextBig Data Systems - Index

Last updated 2 years ago

Was this helpful?

Summary

Modern distributed ML training is communication-intensive. Thanks to the corporate overlords, emerging hardware shows up for help. Programmable switches can aggregate model updates in-network, making the network itself an accelerator for ML.

Background & Motivation

In recent years, we have seen orders of magnitude faster capability improvements in compute than networks. Furthermore, the ratio of communication to computation in the workload itself has shifted. As a result, in distributed training, the network is becoming the bottleneck.

A new approach for model updates is in-network aggregation. In this approach, workers send their model updates over the network, where an aggregation primitive in the network sums the updates and distributes only the resulting value. This offers a fundamental advantage over all-reduce and PS since it avoids end-host processing required to perform aggregation and therefore provides "sub-RTT" latency.

Design & Implementation

The idea sounds amazing but it comes with challenges. First, switches' packet processing capabilities are limited, and ML uses floating-point values, while integer computing is the norm in programmable switches. Second, on-chip memory is also small (tens of MBs while model updates might have hundreds of megabytes of gradients). Finally, the system must be resilient to packet loss without impact on efficiency or correctness. To this end, the authors propose SwitchML which co-designs in-switch processing with an end-host transport layer and ML frameworks.

SwitchML overview

  • Combined switch-host architecture: The switch performs integer aggregation, while end hosts are responsible for managing reliability and performing more complex computations.

  • Pool-based streaming aggregation: SwitchML streams aggregation through the switch. End hosts handle the management of aggregators in a pool, leaving the switch dataplane with a simple design.

  • Fault-tolerant protocols: Recover from packet loss with minimal overheads & handles worker/network failures

  • Quantized integer-based aggregation: Floating-point values are converted to 32-bit integers to satisfy the computing power of switches. This process is done at end hosts without impacting training accuracy.

Aggregation protocol

  • Switch-side: A pool-based design addresses two limitations. First, it removes the need to store an entire model update on a switch at once. Second, it allows processing to be done at the packet level by performing the aggregation in small pieces, at most k integers at a time.

  • Worker-side: After the initial batch of packets is sent, each worker only sends a new packet with the next piece of update once it has received the aggregated packets returned from the switch. This simple communication scheme does not require any explicit coordination among workers yet still achieves agreement on which slots to use.

Packet loss

The natural way to deal with packet losses is retransmissions after timeouts. However, this naive approach has two main challenges: (1) differentiating packets that are lost on the upward paths vs. the downward ones, and (2) being able to retransmit an aggregated response that is lost on the way back to a worker. The solutions are (1) explicitly maintaining information as to which workers have already contributed updates to a given slot to ignore duplicate transmissions, and (2) maintaining a shadow copy of the previous result for each slot, which allows the switch to retransmit a dropped result packet for a slot even when the switch has started reusing the slot for the next chunk. This ensures that no worker node can ever lag more than one chunk behind any of the others for a particular slot.

Quantizing floating-point values

SwitchML uses a numeric representation, inspired by block floating-point, that combines 32-bit fixed-point addition in the switch with adaptive scaling on the workers. This representation is used only when aggregating gradients. Empirically, this does not hurt convergence.

Evaluation

Links & References

Paper PDF
Presentation video at NSDI '21
Presentation slides at NSDI '21
SwitchML on GitHub